Передача электроэнергии

Передача электроэнергии без проводов

Передача электроэнергии без проводов, это способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи.

Беспроводная передача электроэнергии в наши дни

В период с 1961 по 1964 годы, эксперт в области СВЧ-электроники Вильям Браун экспериментировал в США. В 1964 году им было впервые испытано устройство (модель вертолета) способное принимать и использовать энергию СВЧ пучка в виде постоянного тока, благодаря антенной решётке, состоящей из полуволновых диполей, каждый из которых нагружен на высокоэффективные диоды Шоттки. Уже к 1976 году Вильям Браун осуществил передачу СВЧ-пучком мощности в 30 кВт на расстояние в 1,6 км с КПД превышающим 80%.

В 2010 году Haier Group, китайский производитель бытовой техники, представила на всеобщее обозрение на выставке CES 2010 свой уникальный продукт — полностью беспроводной LCD телевизор, основанный на данной технологии.

Из длинного перечня фантастических технических идей, реализованных сегодня, только мечта о беспроводной передаче электрической энергии продолжает оставаться неприступной. Подробные описания энергетических лучей в фантастических романах дразнят инженеров своей очевидной потребностью, и при этом практической невозможностью реализации. Но ситуация постепенно меняется к лучшему. С самого начала открытия электричества возникла проблема его передачи конечному потребителю. Развитие промышленного производства привело к резкому увеличению спроса на электроэнергию. Провода и столбы линий электрических передач стали неотъемлемым элементом пейзажей. Но только специалисты знают, сколько средств и усилий тратится на поддержание этих линий в работоспособном состоянии, и сколько энергии в них теряется.

Ископаемые ресурсы постепенно иссякают, и проблемы энергообеспечения настойчиво стучатся в двери энергетики. Современное человеческое общество вошло в эру освоения космоса, поэтому наши взгляды обращаются к очевидному источнику неисчерпаемой энергии – Солнцу. Этот термоядерный реактор миллиардами лет излучает фантастические количества энергии, малой части которой хватило бы человечеству на долгие годы.

Но одна «маленькая» проблема: как передать полученную энергию потребителю на Землю? С этого момента и начинается серьезный разговор о возможностях осчастливить человечество неограниченными ресурсами. Пока в перечне средств современных космических технологий есть два пути решения проблемы. Один связан с передачей энергии лазерными лучами на наземные приемные терминалы. Второй — с передачей энергии СВЧ-излучением.

Рассмотрим их более подробно

Передача энергии лазерным излучением сталкивается с несколькими принципиальными трудностями. Первая связана с эффективностью первичного преобразования излучения Солнца в когерентное лазерное излучение. А вторая упирается в КПД передачи энергии из космоса на Землю. По первой проблеме наметился прогресс: ученые из Японии сообщили о преобразовании энергии Солнца в излучение лазера с КПД, равным 42%.

Но передача электроэнергии на поверхность сопряжена с рядом задач, которые с трудом поддаются решению. Ослабление лазерного луча, диаметр которого у поверхности Земли может составлять сотни метров. Его интенсивность зависит от погодных условий, точности наведения на приемный терминал и еще массы параметров. Пролетающие самолеты или стаи птиц, попавших в силовой луч, исказят или ослабят его мощность. Если для самолета подобный инцидент пройдет незаметно, то птицы пострадают значительно: интенсивность излучения вблизи поверхности Земли будет в десятки раз мощнее полуденного Солнца.

Второй путь передачи энергии – это радиоволны СВЧ диапазона с частотами от 2,4 до 5,8ГГц. Здесь существует атмосферное «окно», в котором ослабление энергии минимально. Но приемная часть энергии очень сложна и требует разработки современных компонент антенны. По оценкам ученых, для передачи с высоты 36000 км (геостационарная орбита) мощности 5 МВт, потребуется передающая антенна размером 1 км и приемная в поперечнике 10 км. Такие сооружения в ближайшее время для человечества не по карману. 

Беспроводная передача электроэнергии, новые технологии 

В этой ситуации прогресс начался с другой стороны. Развитие современных средств связи и мобильных вычислительных устройств потребовало частой подзарядки их аккумуляторов. В принципе, особой проблемы это не представляет, особенно когда у вас одно или два таких устройства. Но если в семье или офисе их десятки, то непрерывный поиск зарядных блоков, совместимых с изделиями, отвлекает и раздражает. 

По слухам, именно это обстоятельство натолкнуло Марина Солячича, сотрудника Массачусетского университета, на идею способа передачи энергии без проводов. После того, как его среди ночи несколько раз разбудил сигнал разряженного мобильного телефона, он решил серьезно заняться проблемой беспроводной зарядки своих мобильных устройств. В результате появилась совершенно новая технология передачи энергии из сети в мобильные устройства. Метод заключается в резонансном связывании с помощью магнитного поля приемника и передатчика. За непонятным названием и не менее неясным механизмом (метод запатентован и держится в секрете), скрывается способ передачи энергии без проводников с эффективностью более 40%. Технология получила название «WiTricity».

По заявлению авторов изобретения, это не «чистый» резонанс связанных контуров и не трансформатор Теслы, с индуктивной связью. Радиус передачи энергии на сегодня составляет чуть больше двух метров, в перспективе – до 5-7 метров. Сходные технологии лихорадочно разрабатываются и другими фирмами: компания Intel демонстрировала свою технологию WREL с КПД передачи энергии до 75%. В 2009 году фирма Sony продемонстрировала работу телевизора без сетевого подключения. 

Настораживает только одно обстоятельство: независимо от способа передачи и технических ухищрений, плотность энергии и напряженность поля в помещениях должна быть достаточно высокой, чтоб питать устройства мощностью несколько десятков ватт. По признанию самих разработчиков, информации о биологическом воздействии на человека подобных систем пока нет. Учитывая недавнее появление, и разный подход к реализации устройств передачи энергии, подобные исследования еще только предстоят, а результаты появятся не скоро. А мы сможем судить об их негативном воздействии только косвенно. Что-то опять исчезнет из наших жилищ, как, например, тараканы.

Передача электроэнергии по Wi-Fi

Инженеры Вашингтонского университета разработали технологию, позволяющую использовать Wi-Fi в качестве источника энергии для питания портативных устройств и зарядки гаджетов. Технология уже признана журналом Popular Science как одна из лучших инноваций 2015 года. Повсеместное распространение технологии беспроводной передачи данных само по себе произвело настоящую революцию. И вот теперь настала очередь беспроводной передачи энергии по воздуху, которую разработчики из Вашингтонского университета назвали PoWiFi (от Power Over WiFi).

Передача электроэнергии без проводов

   Передача электроэнергии. Технология передачи электроэнергии по Wi-Fi

На стадии тестирования исследователи сумели успешно заряжать литий-ионные и никель-металл-гидридные аккумуляторы небольшой емкости. Используя роутер Asus RT-AC68U и несколько сенсоров, расположенных на расстоянии 8,5 метров от него. Эти сенсоры как раз и преобразуют энергию электромагнитной волны в постоянный ток напряжением от 1,8 до 2,4 вольта, необходимых для питания микроконтроллеров и сенсорных систем. 

Особенность технологии в том, что качество рабочего сигнала при этом не ухудшается. Достаточно лишь перепрошить роутер, и можно будет пользоваться им как обычно, плюс подавать питание к маломощным устройствам. На одной из демонстраций была успешно запитана небольшая камера скрытого наблюдения с низким разрешением, расположенная на расстоянии более 5 метров от роутера. Затем на 41% был заряжен фитнес-трекер Jawbone Up24, на это ушло 2,5 часа.

На вопрос о том, почему эти процессы не сказываются негативно на качестве работы сетевого канала связи, разработчики ответили, что это становится возможным благодаря тому, что перепрошитый роутер, во время своей работы, по незанятым передачей информации каналам рассылает пакеты энергии. К этому решению пришли когда обнаружили, что в периоды молчания энергия попросту утекает из системы, а ведь ее можно направить для питания маломощных устройств.

Перспектива технологии PoWiFi

В перспективе технология PoWiFi вполне сможет послужить для питания датчиков, встроенных в бытовую технику, такую как кофеварки, кондиционеры, стиральные машины, чтобы управлять ими беспроводным способом. Такие датчики уже весьма распространены, они не требуют много энергии, а служат лишь для управления, поэтому со временем необходимость их подключения к традиционным источникам питания отпадет. Кто знает, может быть дело дойдет и до зарядки сотовых телефонов, и других мобильных устройств, инженеры не исключают такой возможности.

Во время исследований систему PoWiFi разместили в шести домах, и предложили жильцам пользоваться интернетом как обычно. Загружать веб-страницы, смотреть потоковое видео, а потом рассказать, что изменилось. В результате оказалось, что производительность сети не изменилась никак. То есть интернет работал как обычно, и присутствие добавленной опции не было заметным.

И это были лишь первые тесты, когда по Wi-Fi собиралось относительно небольшое количество энергии. Планы разработчиков, тем не менее, заключаются в том, чтобы улучшить систему PoWiFi. Повысить ее эффективность, используя многочисленные датчики на больших расстояниях, и таким образом масштабировать ее.

Уже в декабре 2015 года на конференции CoNEXT 2015 в Гейдельберге, Германия, Ассоциации по вычислительной технике был представлен итоговый документ по PoWiFi.

 

Так же читайте по теме:

   Беспроводная зарядка для телефона. Как устроена и работает?

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]